A q-queens problem. VI. The bishops' period

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A q - QUEENS PROBLEM V . THE BISHOPS ’ PERIOD

Part I showed that the number of ways to place q nonattacking queens or similar chess pieces on an n× n square chessboard is a quasipolynomial function of n. We prove the previously empirically observed period of the bishops quasipolynomial, which is exactly 2 for three or more bishops. The proof depends on signed graphs and the Ehrhart theory of inside-out polytopes.

متن کامل

A q - QUEENS PROBLEM V . THE BISHOPS ’ PERIOD

Part I showed that the number of ways to place q nonattacking queens or similar chess pieces on an n× n square chessboard is a quasipolynomial function of n. We prove the previously empirically observed period of the bishops quasipolynomial, which is exactly 2 for three or more bishops. The proof depends on signed graphs and the Ehrhart theory of inside-out polytopes.

متن کامل

A q-QUEENS PROBLEM IV. QUEENS, BISHOPS, NIGHTRIDERS (AND ROOKS)

Parts I–III showed that the number of ways to place q nonattacking queens or similar chess pieces on an n × n chessboard is a quasipolynomial function of n whose coefficients are essentially polynomials in q and, for pieces with some of the queen’s moves, proved formulas for these counting quasipolynomials for small numbers of pieces and highorder coefficients of the general counting quasipolyn...

متن کامل

A q-QUEENS PROBLEM III. PARTIAL QUEENS

Parts I and II showed that the number of ways to place q nonattacking queens or similar chess pieces on an n× n square chessboard is a quasipolynomial function of n in which the coefficients are essentially polynomials in q. We explore this function for partial queens, which are pieces like the rook and bishop whose moves are a subset of those of the queen. We compute the five highest-order coe...

متن کامل

A q-QUEENS PROBLEM III. PARTIAL QUEENS

Parts I and II showed that the number of ways to place q nonattacking queens or similar chess pieces on an n× n square chessboard is a quasipolynomial function of n in which the coefficients are essentially polynomials in q. We explore this function for partial queens, which are pieces like the rook and bishop whose moves are a subset of those of the queen. We compute the five highest-order coe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ars Mathematica Contemporanea

سال: 2019

ISSN: 1855-3974,1855-3966

DOI: 10.26493/1855-3974.1657.d75